EXCEL INTERMEDIATE

PRESENTED BY:

A member of Minnesota State

Linda Muchow
lindac@alextech.edu
320-762-4539
Table of Contents
IF Statement 3
IFS 4
VLOOKUP 5
XLOOKUP 5
CONCAT 8
TEXTJOIN 9
MAXIFS 9
MINIFS 10
SWITCH 10
Date \& Time Functions 11
Now \& Today Functions 11
YEARFAC 11
NETWORKDAYS Function 12
Workday Function 14
EDate 15
EOMONTH 16
Troubleshooting Formulas 17
Trace Precedents and Dependents 17
Show Formulas 18
Evaluate Formula 18
List Management 20
Sort by Values, Cell Color, Font Color, Cell Icons 20
Number, Text, and Date Filters 21
Search Criteria 22
Create Subtotals 22
Remove Subtotals 24
Creating a Table 25
Add a Total Row 25
Convert to Normal Range 26
Protecting / Unprotecting Worksheets 26
Password Protect Workbook 27
Password Protect your Entire File 28
Linking Data 29
Edit Links 29
Data Validation 30
Charting Tools 31

Saving a Chart as a Template .. 33
Create Charts with Keyboard Shortcuts.. 34

IF Statement

The Excel IF Function returns one value if a specified condition evaluates to TRUE, or another value if it evaluates to FALSE. In this example, each employee received a Job rating with 1 being the worst rating and 5 being the best rating. Each employee that has a job rating of 4 or 5 will receive a $\$ 250$ bonus. The IF function can run the logical reference (greater than 3) and put the number 250 in each cell that meets that requirement. If the job rating is less than 4, the IF statement will put a zero in the cell.

G	H	I	J
	Benefits	Salary	Job Rating

1. From the Formulas Tab >> Function Library select Logical and then IF.

2. The Function Arguments window should be filled out as shown below.

3. Use the AutoFill handle to copy the function.

H	I	J
Salary	Job Rating	Bonus
\$ 29,260	-7	250
\$ 39,000	5	250
\$ 49,260	3	0
\$ 24,840	1	0
\$ 39,000	3	0
\$ 74,500	4	250

IFS

Tired of typing complicated, nested IF functions? The IFS function is the solution. With this function, conditions are tested in the order that you specify. If passed, the result is returned. You can also specify an else "catch all" if none of the conditions are met. To specify a default result, enter TRUE for your final logical_test argument. We can use the IFS function to apply bonuses in the table below. A Job rating greater than 3 will receive $\$ 1000$, a Job rating greater than 1 will receive $\$ 500$ and all others will receive $\$ 0$.

Job Rating	Bonus
5	$\$ 1000$
4	$\$ 1000$
3	$\$ 500$
2	$\$ 500$
1	$\$ 0$

1. Formulas Tab \gg Logical \gg IFS
2. Enter in your logical test: E2>3
3. Value_if_true1: 1000

4. Logical_test2: E2>1
5. Value_if_true2: 500

IFS

6. Logical-test3: True
7. Value_if_true3: 0

Logical_test3	true	\$	=	TRUE
Value_if_true3	0	\pm		0

VLOOKUP

There are several Excel functions that you can use to look up and return information within a table. The most popular function for most users is VLOOKUP, which searches the first column of a range of cells and then returns a value from any cell on the same row.

The inherent limitation of VLOOKUP is that whatever value you want to return must be to the right of that first search row.

	A	B	C			D	E	F	G	H
1	Orders									
2	Date	Code	Product		Pri			Code	Product	Price
3	1/5/2009	A23	Paper	\square	\$	5.00		A23	Paper	\$ 5.00
4	1/6/2009	B14	Lamp		\$	40.00		B14	Lamp	\$ 40.00
5	1/7/2009	A27	Desk		\$	179.00		A27	Desk	\$ 179.00
6	1/8/2009	C45	Chair		\$	92.00		C45	Chair	\$ 92.00
7	1/9/2009	B14	Lamp		\$	40.00				
8	1/12/2009	B14	Lamp		\$	40.00				
9	1/13/2009	B14	Lamp		\$	40.00				

In this example we are using the Code in column B as the lookup value. Our table array is an absolute reference to cells F3:H6. Column F provides the lookup reference in the left most column of the table array, referred to as column 1.
Column G, referred to as column 2, will return the product name. Column H, referred to as column 3, will return the product price.

XLOOKUP

The Excel XLOOKUP function is a modern and flexible replacement for older functions like VLOOKUP, HLOOKUP, and LOOKUP. XLOOKUP supports approximate and exact matching, wildcards (* ?) for partial matches, and lookups in vertical or horizontal ranges.

Unlike the other match functions, XLOOKUP supports an optional argument called not_found that can be used to override the \#N/A error when it would otherwise appear. Typical values for not_found might be "Not found", "No match", "No result", etc. When providing a value for not_found, enclose the text in double quotes ("").

Match type

By default, XLOOKUP will perform an exact match. Match behavior is controlled by an optional argument called match_type, which has the following options:

Match type	Behavior
0 (default)	Exact match. Will return \#N/A if no match.
-1	Exact match or next smaller item.
1	Exact match or next larger item.
2	$\underline{\text { Wildcard match }}(*, ?, \sim)$

Search mode

By default, XLOOKUP will start matching from the first data value. Search behavior is controlled by an optional argument called search_mode, which provides the following options:

Search mode	Behavior
1 (default)	Search from first value
-1	Search from last value (reverse)
2	Binary search values sorted in ascending order
-2	Binary search values sorted in descending order

Binary searches are very fast, but data must be sorted as required. If data is not sorted properly, a binary search can return invalid results that look perfectly normal.

1. In this example we will use XLOOKUP instead of VLOOKUP to find the Employee Name and Department by entering the Employee ID in cell A2. NOTE: the data (A4:C14) is a table. This will allow for a user to add/delete data into the table and have the range automatically updated.

A		B	C
1	Employend	Employee Name	Department
2			
3			
4	Employee ID		
5	4390		Employee Name
6	439 Ned Lanning	Department	
2	8604 Margo Hendrix	Sales	

2. Click in cell B2 (Employee Name). Formulas Tab >> Lookup and Reference >> XLOOKUP. Formulas Data Review

3. The Lookup_value is the Employee ID - Cell A2.

4. Click in Lookup_Array. Highlight the Employee ID Range below A4:A14 - notice the range is a table reference instead of an exact cell range.

5. Click in Return_array. This is the column of data you want to return which is the Employee Name (B4:B14).

6. If_not_found can be used to return text such as "Employee Not Found" instead of the error message \#N/A.

7. Click OK.

	A		B
1	Employee ID	Employee Name	Department
2	4390		Ned Lanning

8. Click in C2 to use XLOOKUP to find the Department. Formulas Tab \gg Lookup and Reference \gg XLOOKUP. The following should be entered: Lookup_Value (A2), Lookup_array (A4:A14), Return_array (C2:C14), If_not_found ("") - this returns a blank cell. CLICK OK.

9. Change the Employee ID to lookup a new Employee Name and Department.

A		B	C
1	Employee ID	Employee Name	Department
2	8604	Margo Hendrix	Sales
3			
4			
5	Employee ID	Employee Name	Department
6	4390 Ned Lanning	Marketing	
7	8604 Margo Hendrix	Sales	

10. Results if an employee ID does not exist.

	A		B
1	Employee ID	Employee Name	Department
2	1234	Employee Not Found	
2			

CONCAT

This new function is like CONCATENATE, but better. First, it's shorter and easier to type. But it also supports range references, in addition to cell references. The CONCAT function combines the text from multiple ranges and/or strings.
Formulas Tab >> Text >> CONCAT

A	b	L	ט	t	F
§	2	3	4	5	Result
A	B	C	D	E	ABCDE
Alextech	.edu				Alextech.edu
Monday	Tuesday	Wednesday	Thursday	Friday	MondayTuesdayWednesdayThursdayFriday
I	Love	Saturdays			ILoveSaturdays

TEXTJOIN
This function combines text from multiple ranges, and each item is separated by a delimiter that you specify.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\overline{4}$	$\overline{\mathbf{5}}$	
A	B	C	D	E	A B CDE
Alextech	.edu				Alextech .edu
Monday	Tuesday	Wednesday	Thursday	Friday	Monday Tuesday Wednesday Thursday Friday
I	Love	Saturdays			I Love Saturdays

MAXIFS

The MAXIFS function returns the maximum value among cells specified by a given set of conditions or criteria: numbers, dates, text, etc.

-	A	B	C	D	E	F	G	H	1	J	K		L	M
1	Coun	Salesperson	Order Date	OrderID	der Amount		Salespersor	Max Min						
2	UK	Suyama	11/12/2021	10249	\$1,863.40		Suyama	=MAXIFS(E:E,B:B,G2)						
3	USA	Peacock	11/13/2021	10252	\$3,597.90		Peacock							
4	USA	Peacock	11/14/2021	10250	\$1,552.60		Leverling	Function Arguments						
5	USA	Leverling	11/17/2021	10251	\$654.06		Dodsworth	MAXIFS						
6	UK	Dodsworth	11/17/2021	10255	\$2,490.50		Buchanan	Max_range	E:E			\uparrow	=	
7	UK	Buchanan	11/18/2021	10248	\$440.00		Davolio	Max_rane	B:B			\pm		
8	USA	Leverling	11/18/2021	10253	\$1,444.80		Callahan	ria_ran	B:B					
9	USA	Leverling	11/19/2021	10256	\$517.80		Fuller	Criteria 1	G2\|			\uparrow		
10	USA	Peacock	11/24/2021	10257	\$1,119.90		King	Criteria_range2				卫	= refer	
11	UK	Buchanan	11/25/2021	10254	\$556.62									
12	USA	Davolio	11/25/2021	10258	\$1,614.88								$=4$	
12	1ica	namanal.	11/ว7/วกา1	1กาธก	dinn on			Returns the maximum valu	e amo	ecif		set	fon	

MINIFS

The MINIFS function returns the minimum value among cells specified by a given set of conditions or criteria.

4	A	B	C	D	E	F	G	H	J		K	L	M	N
1	Coun	Salesperson	Order Date	OrderID	der Amount		Salesperson		Min					
2	UK	Suyama	11/12/2021	10249	\$1,863.40		Suyama	4707.54	=MINIFS(E:E,B:B,G2)					
3	USA	Peacock	11/13/2021	10252	\$3,597.90		Peacock	11188.4						
4	USA	Peacock	11/14/2021	10250	\$1,552.60		Leverling	10952.84	Function Arguments					
5	USA	Leverling	11/17/2021	10251	\$654.06		Dodsworth	11380	MINIFS					
6	UK	Dodsworth	11/17/2021	10255	\$2,490.50		Buchanan	9210.9	Min_range	E:E			\uparrow	$=\mathrm{E}_{\mathrm{E}} \mathrm{E}$
7	UK	Buchanan	11/18/2021	10248	\$440.00		Davolio	15810	Criteria_range1	B: B			+	$=B: B$
8	USA	Leverling	11/18/2021	10253	\$1,444.80		Callahan	4825	Criterial	G2			+	= 'Suyama'
9	USA	Leverling	11/19/2021	10256	\$517.80		Fuller	16387.5	Criteria_range2				+	$=$ reference
10	USA	Peacock	11/24/2021	10257	\$1,119.90		King	12615.05						
11	UK	Buchanan	11/25/2021	10254	\$556.62									
12	USA	Davolio	11/25/2021	10258	\$1,614.88				Daturne the minimum					$=48$

Results

G	H	1
Salesperson Max		Min
Suyama	\$4,707.54	\$48.00
Peacock	\$11,188.40	\$18.40
Leverling	\$10,952.84	\$45.00
Dodsworth	\$11,380.00	\$12.50
Buchanan	\$9,210.90	\$103.20
Davolio	\$15,810.00	\$33.75
Callahan	\$4,825.00	\$36.00
Fuller	\$16,387.50	\$40.00
King	\$12,615.05	\$60.00

SWITCH

The SWITCH function evaluates one value (called the expression) against a list of values and returns the result corresponding to the first matching value.

	D	E	F	G	H	I	J	K		L		
irs	Status	Job Ratin	ing Bonus		=		Job Rating	Bonus				
7	Full Time	1	=SWITCH(E	2,5,2	00,4,		5	2000				
5	Half-Time	4			>=		4	2000				
6	Hourly	3			<		3	1000			Job Rating	Bonus
9	Full Time	2			<		2	1000				
1	Full Time	4			<>		1	0			1	0
3	Contract	5 F	Function Arguments						?	\times	4	2000
7	Full Time	1 s	switch									
5	Full Time	5	Expression	E2			$\underline{\text { ¢ }}=1$			\wedge	3	1000
2	Full Time	1	Value1	5			$\underline{\underline{1}}=5$				2	1000
6	Full Time	3	Result1	2000			$\underline{\Psi}=2000$					
5	Full Time	4	Default_or_value2	4			$\underline{\underline{1}} \mathbf{T}=4$				4	2000
4	Full Time	3	Result2	2000			$\begin{aligned} \underline{\text { I }} & =2000 \\ & =\end{aligned}$			\checkmark	5	2000

Date \& Time Functions

Now \& Today Functions

Manipulating Dates, Times \& Text
NOW
In Excel, the NOW function returns the current system date and time. This function will refresh the date/time value whenever the worksheet recalculates. The syntax for the NOW function is: NOW()

1. Click in the cell you wish the current date to appear.
2. Type in the following: $=\mathbf{N O W}()$ and press the enter key.

TODAY
In Excel, the TODAY function returns the current system date. This function will refresh the date whenever the worksheet recalculates. The syntax for the TODAY function is: TODAY()

1. Click in the cell you wish the current date to appear.
2. Type in the following: =TODAY() and press the enter key.

Date Keyboard Shortcuts

- Current Date Ctrl + ;
- Current Time Ctrl + Shift + ;

YEARFAC

Age from Birthday

You can calculate a person's age from their birthdate by using the INT, YEARFRAC, and TODAY functions.
=(INT(YEARFRAC(birthdate,TODAY()))
YEARFRAC calculates a decimal number representing the fraction of a year between two dates. The INT function rounds down that number to the integer value. The TODAY function always calculates the age in comparison to the current date.

1. Formulas Tab \gg Math \& Trig \gg INT
2. Use the name box dropdown >> More Functions and find the YEARFRAC Function.
3. The Start Date is the Birth Date. The End Date is Today().

4. Click OK.

A	B $\}$
Birth Date	Age
10/31/1933	85
8/16/1996	22
4/20/2004	14
9/9/2012	6

NETWORKDAYS FUNCTION

Returns the number of whole working days between start_date and end_date. Working days exclude weekends and any dates identified in holidays. Use NETWORKDAYS to calculate employee benefits that accrue based on the number of days worked during a specific term.

1. Click Formulas>>Date \& Time>>NETWORKDAYS
2. Enter in the following cell references.

3. Click OK. Your result will be displayed.

D	E	F
Start Date	Project Finish Date	Project Length
$1 / 6 / 2019$	$2 / 15 / 2019$	29
$2 / 11 / 2019$	$3 / 12 / 2019$	21
$6 / 10 / 2019$	$6 / 28 / 2019$	15
$7 / 28 / 2019$	$10 / 15 / 2019$	56
$11 / 16 / 2019$	$1 / 15 / 2020$	39

NOTE: if you want the word Days to be displayed in the cell along with the number, click in the formula bar and use the ampersand (\&) to add text. Text needs to be wrapped in quotes " Days".

```
=NETWORKDAYS(D2,E2,$A$2:$A$19)&" Days"
```

D	E	F
Start	Project	Project
Date	Finish Date	Length
1/6/2019	2/15/2019	29 Days
2/11/2019	3/12/2019	21 Days
6/10/2019	6/28/2019	15 Days
7/28/2019	10/15/2019	56 Days
11/16/2019	1/15/2020	39 Days

Remarks

- Microsoft Excel stores dates as sequential serial numbers so they can be used in calculations. By default, January 1, 1900 is serial number 1, and January 1, 2008 is serial number 39448 because it is 39,448 days after January 1, 1900.

Workday Function

WORKDAY()

Occasionally, it may be useful to count ahead based on workdays (Monday-Friday) instead of all 7 days of the week... For that, Excel has provided WORKDAY.
The start_date is as above.
The days input is the number of workdays ahead (or behind) of the present day you would like to move.

D	E	F
Start	Project	Project Date Length
$1 / 6 / 2019$	5	
$2 / 11 / 2019$	60	
$6 / 10 / 2019$	45	
$7 / 28 / 2019$	45	
$11 / 16 / 2019$	80	

The [holidays] input is optional, but lets you disqualify specific days (like Thanksgiving or Christmas, for example), which might otherwise fall during the work week.

D	E	F
Start Date	Project Length	Project Finish Date
$1 / 6 / 2019$	5	$1 / 11 / 2019$
$2 / 11 / 2019$	60	$5 / 7 / 2019$
$6 / 10 / 2019$	45	$8 / 13 / 2019$
$7 / 28 / 2019$	45	$9 / 30 / 2019$
$11 / 16 / 2019$	80	$3 / 16 / 2020$

Weekday

The WEEKDAY function returns a number from 1 (Sunday) to 7 (Saturday) representing the day of the week of a date. The 6 in this example means it is Friday. =Weekday(A1)
=WEEKDAY(D14)

You can custom format the number using ddd (Fri) or dddd (Friday). To do so, right mouse click the cell and select Format Cells. Select Custom. Enter in ddd or dddd. Click OK.

EDATE

The EDATE Function returns a date that is a specified number of months before or after a supplied start date. Example: New employees are on a probationary period for a predetermined number of months. The probationary period length varies according to each job. Use EDate to figure out the end date of the probationary period.

From the Formulas Tab >> Date \& Time, select EDATE. Select the start date (this date should be in your worksheet) and select the number of months (this date can be entered in manually as well). Click OK.

EOMONTH

Returns a date that is the last day of the month which is a specified number of months before or after an initial supplied start date.
Example: New employees are on a probationary period for a predetermined number of months and ends on the last day of the month. The probationary period length varies according to each job. Use EOMONTH to figure out the end date of the probationary period.

From the Formulas Tab >> Date \& Time, select EOMONTH. Select the start date (this date should be in your worksheet) and select the number of months (this date can be entered manually as well). Click OK.

Troubleshooting Formulas

Trace Precedents and Dependents

Trace Precedents

The Trace Precedents command is used to backtrack through all the cells that are used to calculate the current formula.

1. Formulas Tab >> Formula Auditing >> Trace Precedents

2. Results:

Each blue dot corresponds to a value used in the formula. An arrow points to the end value. If you click the Trace Precedents command again, any values that were used to calculate any precedent formulas are also highlighted. This means you can keep clicking Trace Precedents to go back multiple levels of precedents.
3. You can remove these arrows by clicking Remove Arrows in the Formula Auditing group:

Trace Dependents

The Trace Dependents command works the opposite way of Trace Precedents: it highlights all the items that depend on the value in the current cell. Excel will alert you if you click this command when it doesn't apply:
! The Trace Dependents command found no formulas that refer to the active cell.

OK

1. Formulas Tab \gg Formula Auditing Group \gg Trace Dependents.

	∇f_{x} Show Formulas	160
${ }^{5}$ Jatrace Dependents	4. Error Checking v	
$\stackrel{\rightharpoonup}{ } \times$ Remove Arrows	(fx) Evaluate Formula	Window
Formula Auditing		

2．Results

This command can also be clicked multiple times to continue stepping through each level of dependency．

Remove Arrows

1．You can remove these arrows by clicking Remove Arrows in the Formula Auditing group：

味碞 Trace Precedents 原国 Show Formulas	$\begin{aligned} & \square \square \\ & \square 0 \end{aligned}$
$\overleftrightarrow{\downarrow}$ Remove Arrows－（fx）valuate Formula	Watch Window
Formula Auditing	

Show Formulas

The Show Formulas command will show all the formulas in the worksheet rather than their computed value．This is a toggle command that also expands the column widths，so the formulas are easier to read：

E	F
Job Rating	Bonus
1 3	$=\mathrm{IF}(\mathrm{E} 2>3,250,0)$
4	$=\mathrm{IF}(\mathrm{E} 3>3,250,0)$
3	$=\mathrm{IF}(\mathrm{E} 4>3,250,0)$
2	$=\mathrm{IF}(\mathrm{E} 5>3,250,0)$
4	$=I F(E 6>3,250,0)$
5	$=\mathrm{IF}(\mathrm{E} 7>3,250,0)$

This mode is very useful when you are creating formulas for a large sheet．You can ensure that the formulas are correct before adding or computing data．Viewing formulas also makes it easier for others to view your work and understand how values are calculated instead of clicking cells one at a time and looking at the formula bar．
Click this command again to show the calculated values．The columns will also return to their normal widths．

Evaluate Formula

As we have seen by examining the other commands in this section，there are a number of commands you can use to easily and accurately track what a formula is doing．The Evaluate Formula command takes this concept one step further by showing you every single calculation that was used to reach a particular value．This command is extremely useful for making sure a complex formula is doing exactly what you intend it to do，or for finding that one small piece that is causing your calculation to fail along the way．

Here, we have selected a value in the Profit column of our sales worksheet and will step through the formula: OBAT

The Evaluate Formula dialog box will appear and show the formula that will be evaluated:

Click Evaluate to step into the first part of the formula. It turns the first reference into the number.

Evaluate Formula		?
Reference:	Evaluation:	
Worksheet!\$C\$2	= $8.75{ }^{*} 15^{*} \mathrm{~F} 1+\mathrm{A} 2{ }^{*} \mathrm{~B} 2$	

To show the result of the underlined expression, click Evaluate. The most recent result appears italicized.

| Evaluate |
| :---: | :---: | :---: |

Now, the next value is highlighted and the option to Step In is available again. Click Evaluate to continue checking and evaluating the formula:

Evaluate Formula				?	\times
Reference: Formulas!\$G\$2	Evaluation:				
	1996-(400*E2+F2)				\wedge
To show the result of the underlined expression, click Evaluate. The most recent result appears italicized.					
	Evaluate	Step ! ${ }^{\text {n }}$	Step Out		

Eventually, the checker will step through all the calculations one at a time before showing you the final step:

To show the result of the underlined expression, click Evaluate. The most recent result appears italicized.

Clicking Evaluate once more will perform the final calculation and show the result. Clicking Evaluate a final time will start the process over from the beginning.

List Management

Sort by Values, Cell Color, Font Color, Cell Icons

1) If several cells in a list have a specific cell color, font color, etc. you can right mouse click >> Sort and select from the list.

2) In this example Put Selected Cell Color On Top was selected.

s	Salary	Job Ra			
	54,550	1			
	26,795	4	:	Salary	Job Ratiñ
	42,540	5		26,795	4
	35,680	2		35,680	2
	72,830			60,830	2
	60,830	2		54,550	1

Number, Text, and Date Filters

1) You can use AutoFilter (Home Tab \gg Editing Group \gg Sort \& Filter

2) Each filter dropdown contains content specific filters.
a. Text Filters

oror	10-Anr-99	72	DMR
Text Eilters	Equals...		R
Search	Does Not Equal...		
\checkmark (Select All) \checkmark Contract \checkmark Full Time \checkmark Half-Time \checkmark Hourly	Begins W Ends With		R
	Contains Does Not	tai	R
	Custom		

b. Number Filters

c. Date Filters

Search Criteria

1) You can type in specific search criteria in the Search Text box. Items will be automatically selected based on the criteria you provide.

Search	Text Filters >		
\checkmark (Select All)	ful	11	\times
\checkmark Contract	(Select All Search Results)Add current selection to filterFull Time		
\checkmark Full Time			
\checkmark Half-Time			
\checkmark Hourly			

2) You can also use the select checkmarks to select the criteria you want to filter.

Create Subtotals

1) The first step in creating subtotals is to sort by the field you want the subtotals grouped by. In this example we have sorted by Status and will have subtotals add up the amount of salary in each Status group: Full, Half-Time, Contract, Hourly.

	A	B	C	D	E	F	G	H	1
	Employee Name	Building	Department	Status	Hire Date	Years	Benefits	Salary	Job Rating
!	Dawson, Jonathan	West	ADC	Contract	6-Mar-07	14		42,540	5
;	Spencer, Boyd	Main	Training	Contract	17-Apr-07	14		66,580	5
+	Rowe, Ken	West	Training	Contract	8-Sep-00	20		76,690	3
,	Phelps, Gretchen	South	Environmental Complii	Contract	26-Nov-10	10		58,130	2
:	Mrhanlon nn-n-.n	inint	г-n:1:in-lrn-imanin	r-n+...	$1{ }^{1}$	$1 \wedge$		- 3 n n	1

To sort, click in one cell in the column you wish to sort the entire list >> Home Tab >> Editing Group >> Sort and Filter >> Sort and Filter.

$\frac{A}{Z}$		2
Sort \&	Find \&	Anal
Filter ${ }^{\sim}$	Select ${ }^{\sim}$	Da
A \downarrow Sort A to Z		
\downarrow \^ Custom Sort...		

2) To insert Subtotals, Data Tab \gg Outline Group \gg Subtotal

3) Select the column you sorted by at the At each change in: dropdown. Here we will select Status.

4) We will select Sum in the Use Function: dropdown. Notice you can find average, max, min, etc., as well.

Use function:
Sum
Sum
Count Average Max Min Product

5) Select where you want to add the subtotal.

Add subtotal to:

\square Years	\wedge
\square Benefits	
\square Salary	
\square Job Rating	
\square New Salary	\vee

6) You will now have outline levels you can click on the right-hand side of the data.

Level 1 will display the Grant Total.

7) Level 2 displays subtotals and the grand total.

1	3		D	E	F	G	H
	W	1	Status	Hire Date	Years	Benefits	Salary
	+	200	Contrac				11,422,547
	+	594	Full Tim				22,052,615
	+	691	Half-Tim				2,984,325
	+	746	Hourly				1,407,620
-		747	Grand T				37,867,107

8) Level 3 displays all data.

1	23	D	E	F	G	H	1
		Status	Hire Date	Years	Benefits	Salary	Job Rating
		Contract	6-Mar-07	14		42,540	5
		Contract	17-Apr-07	14		66,580	5
		Contract	8-Sep-00	20		76,690	3

Remove SubTotals

1) Data Tab >> Outline Group >> Subtotal

2) Remove AllReplace current subtotalsPage break between groupsSummary below data

Creating a Table

There are two ways to create a table. You can either insert a table directly in the default table style or you can convert an existing range into a table. The second approach is by far the most common:

1. On a worksheet, click anywhere in your list of information.
2. On the Home tab, within the Styles group, select Format at Table.
3. A Create Table dialog box will appear. Your selected range appears as an absolute cell reference. Your range will already be selected and displayed in the Where is the data for your table?

4. If your selected range contains data that you want to display as table headers, select the My table has headers check box.
5. Click the OK command button to create the table.
6. When you have an Excel table selected, you will have access to a Table Tools contextual tab with a single Design sub-tab.
Each time you create a table, Excel creates a default table name in the Properties group (e.g., Table1, Table2, etc.). The scope of the table name is for the entire workbook.

Add a Total Row

1. Click anywhere in the table
2. On the Design Tab, within the Table Style Options group, select Total Row check box.

	Employee Name	- Building -	Department	\checkmark	Status	\checkmark	Hire Date	Years -	Salary	Job Rating -
740	Jackson, Eric	Watson	Research/Development		Hourly		31-Dec-10	5	19,044	1
741	Warner, Stephen	North	Research/Development		Contract		3-Feb-93	23	60,760	2
742	Monroe, Justin	North	Research/Development		Contract		10-Jul-94	21	64,720	5
143	Total								37,836,96/	3.20242915

3. In the total row, click the cell in the column for which you want to calculate a total, and then click the dropdown that appears.
4. In the dropdown list, select the function that you want to use to calculate the total.

	Employee Name	Building	Departmel
737	Greene, Alexander	Main	Research I
738	Solomon, Michael	Taft	Research/
739	McCall, Keith	Watson	Research/
740	Jackson, Eric	Watson	Research/
741	Warner, Stephen	North	Research/
742	Monroe, Justin	North	Research/
743	Total	ζ	

37,836,967	3.20242915
	None
	Average
	Count
	Max
	Min
	Sum
	StdDev
	Var
	re Functions...

Convert to Normal Range

1) Click with in the table.
2) Table Design Tab >> Tools Group >> Convert to Range

3) Click Yes to confirm.

4) Any formatting will stay.

Protecting / Unprotecting Worksheets

Protecting a worksheet prevents editing of cells (unless they are unlocked) and can also prevent other commands from being used.

Cell Formatting

We first unlock the cells we want users to be able to change.

1) Select the cell(s) >> Right mouse click >> Cell Format
2) Protection Tab >> Deselect the Locked checkmark.

1. Turn on protection by choosing Review >> Protect sheet. Select specific actions to permit. A password is optional.

2. To unprotect, choose Review >> Unprotect Sheet. Enter the password if prompted

Password Protect Workbook

This will protect users from deleting, moving, renaming worksheet tabs.

1. Review Tab >> Protect Workbook.
2. Enter in your password. Click OK

Protect Structure and W... ? X

Password (optional):
-••
Protect workbook forStructure
Windows

Cancel
3. Confirm your Password. Click OK.
4. Users will not be able to create new worksheets, add, rename, hide/unhide worksheets.

Password Protect your Entire File

1. Click the File Tab >> Info >> Encrypt with Password.

NOTE: you can protect your current sheet and workbook structure here as well.

2. Enter and confirm your password.
Encrypt Document ? \times
Encrypt the contents of this file
Password:
•

Caution: If you lose or forget the password, it cannot be recovered. It is advisable to keep a list of passwords and their corresponding document names in a safe place. (Remember that passwords are case-sensitive.)

Cancel
3. Excel will inform you that a password is required.

Linking Data

Linking allows data stored on a worksheet to be referenced by another worksheet. This can be within the same workbook, or in separate workbooks.

Linking worksheets

1. Open the file containing worksheets that you want to link together.
2. Copy the cell you wish to link to another worksheet.
3. Switch to that worksheet and select the desired cell.
4. Right mouse click >> Select the Paste Link option.

5.

If the data is changed for a source cell, it is automatically updated in the destination cell, provided the changes to the source are saved.

Edit Links

One file could be linked to one or more other files through formulae. During the course of time, as these workbooks get updated / changed, there could be a need to change the links in these workbooks. Changing the source link allows the user to change the location of the source where the data exists or to change the link to a new workbook altogether.

To change the source link, you must use the "Edit Links" option. This option gives the user a view of all the other files the current file is linked to, so that the user can update or remove the links.

1. From the Data Tab select Edit Links.

Data	Review View
eries le surces	

2. This window allows you to Change the source, open the source, break the link, or check the status.

Data Validation

To limit entry to a list of values:

1. Ahead of time, enter the possible values on the same worksheet but far away from anywhere that will contain values or be subjected to possible deletion.
2. Click in the cell(s) where you want to control what gets entered.
3. Select Data ribbon > Data Tools group > Data Validation
4. On the Settings tab, select List under Allow:
5. Enter or select the source for possible responses.

6. Under Input Message, you can provide a prompt to assist during data entry:

Settings Input Message Error Alert
Show input message when cell is selected
When cell is selected, show this input message:
Iitle:
Code
Input message:
Please choose from the dropdown list.

7. Under Error Alert, you can provide remedial support to encourage the correct selection. You can also choose to make the error only a warning instead of refusing to take their value.
8. Click on OK to finalize your choices.

To restrict entry to other specific types:
At times it is useful to set cells to only accept certain kinds of information. These are things such as whole numbers, decimals, and dates.

1. Click in the cell(s) where you want to control what gets entered
2. Select Data ribbon $>$ Data Tools group > Data Validation

Data Validation			
Settings	Input Message	Error Alert	
Validation criteria			
Allow:			
Whole number		\checkmark Ignore blank	
Any value			
Whole number			
Decimal			
List			
Date			
Time ${ }^{\text {® }}$ 相			
Text length			
Custom			

Charting Tools

1. Insert Tab >> Charts group >> select a chart (Line, Pie, Bar).
2. Excel offers a Recommended Charts tool. The way this works is very intuitive and is based on the data you have selected. For instance, a table with a simple layout of two rows and four columns will result in a suggestion of a simple chart such as a line chart. However, you can always choose a different chart if you don't like the results.

Recommended charts are available from the INSERT >> Charts Group >> Recommended Charts.
3. Change the chart type by selecting Chart Tools >> Design Tab >> Change Chart type.

4. Select from the left column (Column, Line, Bar). Select the chart type on the right. Click OK.

Switch Row/Column

If you want to switch the Legend and the Axis information, use Switch Row/Column.

1. Select the Chart. Design Tab >> Data Group >> Switch Row/Column

Chart Title

Chart Title

Chart Elements

Use chart elements to move the Legend, add Data Labels and customize your chart axis.

Chart Style
Chart Styles allows you to change the style and colors of your chart.

Chart Filter

Chart filters allows you filter out data.

Saving a Chart as a Template

Once you get your chart looking just the way you like it, you can save the chart type, colors, and formatting as a template that can be reused to make on future charts.

To save this chart as a template, right mouse click the chart (either in the plot area or chart area) and choose Save as Template. This will display a Save Chart Template dialogue box; it's virtually identical to the regular Save dialog. Just enter an appropriate name for your chart template and then click the Save button. By default, the templates will be saved in an Excel chart folder. Then, you can apply the template right away by selecting it from the Templates folder.

Change Chart Type
Recommended Charts All Charts

If you select Templates in the pane on the left of the box, you will see the chart template that you saved displayed on the right side. Just click the template icon to apply the template to the selected data.

Create Charts with Keyboard Shortcuts

You can quickly add charts to your workbook using two different keyboard shortcuts.

1. To add a chart into the worksheet that is currently active, select the data you wish to chart and press Alt + F1.

2. To insert a chart into a new worksheet in your workbook, select the data you wish to chart and press the F11 key. This chart your data and place in a worksheet of its own.

Change the Default Chart Type

You can change the default chart type that is inserted into your worksheets.

1. Open the Change Chart Type dialog box by inserting a chart. Then, from the Chart Tools Ribbon Option, on the Design Tab, in the Type Group, click Change Chart Type.

2. In the Change Chart Type dialog box, right mouse click the chart you wish to set as your default. Select Set as Default Chart.

3. Click OK.

Dates

Excel will choose how it charts dates. If you want each date to show up on your chart you must change the Axis option to Text.

1. Double click the Date Axis. Change the Axis option to Text axis.

4 Axis Options
Axis Type
Automatically select based on data
9 Text axis
Date axis
Vertical axis crosses
2. Results:

Use a Table to Create a Chart

Format your source data as a table, then create a chart based on that table. When you add more data below the table, it will automatically be included in both the table and the chart, keeping everything consistent and up to date.

